Burg’s Method, Algorithm and Recursion

Cedrick Collomb
http://ccollomb.free.fr/
Copyright © 2009. All Rights Reserved.

Created: November 8, 2009
Last Modified: November 10, 2009

Contents
1. Linear PrediCtion RECAP i ittt e e e reeee e e e et e e e e e e e aanes 1
P =0 0 S\, =1 1 o o TP ERTR PR 2
A, The Very SIMPIE IUEA.......uuiiii i e eerre e e e e s ennnes 2
b. Some preparative NOTAtIONS.........coiii i 3
C. S To11Y/T oo I (o] S U PSRRI 4
G T =W o ST T 11 1o SRS 6
A, FIrst pass algorithm.........eeeeeiee e 6
b. Improved algorithm ... 6
O = TU] (o 0 =T U1 1T I RO PERR 7
o T I TR0 =T V7 (1o o PP VPRPURPRTRN 7
b. Thefinal algorithm ... e 8
T S (=] (=] €= ot T UEEPU TP 9
6. Appendix. Non optimized C++ COUEoooiiiiiiiiiiiiii e 9

1.Linear Prediction Recap

Given a discrete set of N original valucéxn)nDﬂ , we use k coefficients

0N]

k
(an)nDﬂl,k] to approximate the original values by, =Y ax,_, for what is called

i=1

k

the forward linear prediction, and by, = —Zagxn+i for what is called the backward
i=1

linear prediction.

Simply put eachy, is a linear weighted combination of the k previous
known values and eaclz, is a linear weighted combination of the k next \kno
values. Therefore note thay, is only defined fornD[[k,N]], and z, is only

defined for nO[O,N —k].

The usual way to chos(aah) is by minimizing the sum of the squares of

n1k]
the error between the original and approximatedeslfor example for the forward
linear prediction we would try to minimizé, in the following formula.

n= n=k

EDACEY :i[—(—Zaxnjj W

For the backward linear prediction we would try onimize B, in the
following formula.

Bk=i(><n-zn)2=N_k(>ﬁ1-(-iaxn+inz)

n=k n=0 i=1

The issue with solving for(a,) by minimizing either F_ or B, as

nOJ1.k]
described for example in Collomb (2009), is thag tihhethod uses covariance or
autocorrelation coefficients which are ill suitear inumerical computation, but also
because the models are not always stable modeje$Ha002). What does that mean

in practice? It simply means that ti(an)nmﬂlw returned by the algorithm fail to be

useful and do not approximate well the originaluesl. Therefore, a more robust and
stable solution is desirable, and that is exactigtwhe Burg’s method is.

2.Burg’s Method

a. The very simple idea

Burg's idea is remarkably simple but is either explained (Press et al., 2002),
sometimes hidden behind unnecessary obfuscatiodsvacabulary (Burg, 1975),
sometimes not rigorously derived (Claerbout, 1993%), often buried under the
unnecessary whole lattice filters theory (Haye$220

Imagine yourself in 1975, you are using the LevinBurbin recursion
(Collomb, 2009), ideally you would like to find alation with similar computation
requirements but without the instability. That isaetly what Burg has done by
reusing the Levinson-Durbin recursion with a diffier constraint.

In the original Levinson-Durbin recursion, the daménts (an)nmﬂlkﬂ are

_ (0]
1
a
& :
stored in a vectorA, =| a, | and an inverted order vectdf, = az .
a
L& | 1]
The recursion formula is therefore the following
A = At N, 3)

With g computed so that to respect the initial problemditions as detailed
in Collomb (2009). Burg’s idea was simply to charige way x4 is computed, so
that not to fit the initial problem conditions, btat instead minimize the total sum of
F. + B, introducedin (1) and (2).

That is it, that was not too complicated was itAWNbis time to derive the
formulas.

b. Some preparative notations

Before going further, it is better to prepare bymging few notations to make
the next steps easier. Reworking equation (1) finidg a, =1 gives

Fk=i(aoxn+zk:ayxn_ij2=ZN:(:Oagxn_ij2:i(fk(n))2 (4)

n=k i=1 n=k n=k
With
i (n) :Zaixn—i %)

i=0
Similarly, reworking equation (2) gives

k

B, =NZ_lk[aoxn+iaxnﬂj2=N_k(i%_if=NZ(bK(n))2 6)

With
B, ()= ax. Q

Finally writing A, as the vector of the coefficien(sa;)n using (3)

C[1k+1)’
and the fact thaV, is simply the inverted ofA , and defining a,,, =0, we get

a, =8, + {3, ©)
c. Solving for u

Assuming that we have found, , in order to find 1/, we need to use (4) and
(6), and simply need to minimize

et B = 3. (M) + 3 (s (0) ©)

From (5) and (8) we derive

k+1
fra (n) = z X,
i=0
k+1 k+1
= z a Xt /JZ Bysg-i Koi
i=0 i=0

k+1

= 1, () 438 %
=0

Therefore, feer (N) = f (n) + 2y (Nn—k=1) (10)

From (7) and (8) we derive

k+1
bk+l (n) = Zaixmi
i=0
k+1 k+1

=208 X T By Ko
i=0 i=0

k+1

=b (n) +:UZ(; A Xo k-
=

Therefore, B, (n) =, (n)+uf, (n+k+1) (11)

Plugging (10) and (11) into (9) gives

N N-k-1

Feat B = O (fo(n)+ b, (n-k=1))"+ > (b (n)+uf, (n+k+1))* (12)

n=k+1 n=i

This can be minimized by simply finding when theridative of the u
variable is zero. Therefore, we need to fipd so that

(Fe +Be.y)

T 0 (13)

Plugging (12) into (13) we get

n=k+1 n=

A Z ek F)t (i)

0u
:2ZN: b, (n-k=1)(f, (n)+ b (n-k-1)

n=k+1
N-k-1

2> f (n+k+1)(b (n)+uf, (n+k+1)

Therefore
0= glq(n—k—l)(fk(n)+,uq(n—k—1))

N-k-1

+ ; f (n+k+1)(la, (n)+ uf, (n+k+1))

Thus

0= Y f,(n)h, (n-k-1)+x Y b, (n-k-1

k+1 n=k+1

>
1]

N-k-1 N-k-1)
+ > f (ntk+1)b (n)+u > f (n+k+1)
n=0 n=0

Extracting i is now easy and gives

Simplifying by adjusting indices and bounds resints

N-k-1

=23 f(n+k+1)b (n)
H= ano N—k-1 (14)

3. Burg’s Algorithm

a. First pass algorithm

At this stage we have enough to implement a firgsspversion of the

algorithm following the steps below.

iv.

and (bK+l(n))nEﬂ0,N—k—1] require computing sums which are not necessarge Th

recursive formulas (10) and (11) can be used taogte same result quicker and with

Choose m, the number of wanted coefficients
Initialize A, =[1]
Using (5) and (7), initialize allf,(n) =by(n)
ForkfromOtom-1

Calculate i using (14)

Update A,, using (8)
Update (fkﬂ(n))mﬂmw
Update (bK+l(n))nEﬂO,N—k—l] using (7)

X,

using (5)

Improved algorithm

The previous algorithm is fine except that the uwesleof (fm(n))

less effort.

iv.

Choose m, the number of wanted coefficients
Initialize A, =[1]
Using (5) and (7), initialize allf,(n) =by(n)
ForkfromOtom-1

Calculate # using (14)

Update A,, using (8)
Update (fk+1(n))nm[[k+1,N]]
Update (bK+1(n))ncﬂo,N—k—l}] using (11

X,

using (10)

4.Burg’s recursion

a. The derivation

The improved algorithm is better, however theressilesome simplifications
that can happen. Calculatipg can be done more simply and lead to an improved
third version referred as Burg’s recursion in fiterdture.

First of all note that the denominatd®, of is

D, =F, - f, (k) +B, —b (N -k)* (15)

And we would like to find a recursive formula s@tho be able to calculate
Dit = Fna = faa (K +1)° + B, —b,,,(N —k —1)°. Expanding the squares in (12) and
collecting around we find

N

Fea By = Y [(n)’ + 20y (n-k=1) £, (n) + 7 (n-k - 1))

n=k+1

+N§:—l(h<(n)2 +2b, (n) fk(n+k+1)+,u2fk(n+k+])2)

50 n (o
+zﬂ(3 b, (n-k=1) f, () + 3 B (n) fk(n+k+])J

n=k+1 n=0

+ﬂ2[> b, (n-k-1)+ 3 fk(”+k+l)2j

n=k+1 n=0

+1

Using (4) and (6), and updating indices we get
Fea + B =R - fk(k)2+ B, ~b (N _k)2

+2/J(Z:lb“(j) (] +k+1)+NnZk'le(n) fk(n+k+j)J
S $ 0

n=0 n=k+1

z

Therefore

Fei+Boy = F — f (K)* +B, - (N -k)?
+4,u(N_k:bK(n) 3 (n+k+1)j
+4(F = 1, (k) +B, =, (N -K)*)
Factorizing and using (14) gives
Foa+ By = (14 £2) (Fi = i (K)* + B =B, (N-K)’)
a4 3 oS n ()
= (1+22)(F = 1, () + B, =, (N-K)?)
24 (F = 1, ()" + B, =, (N -K)’)
= (1-42)(Fe - £ (k)" + B b, (N -K)?)
=(1-4%)D,

And finally
Dy = (1 #°) D, = fiy (k+1)° =y (N -k =1)° (16)
The final algorithm

Choose m, the number of wanted coefficients
Initialize A, =[1]

ii. Using (5) and (7), initialize allf,(n) =b,(n)=x,

Using (4) and (6), computd, and B,
Using (15) computeD,
ForkfromOtom-1

Calculate ¢ using g =—-"
Dk

Update A, using (8)

Update (fkﬂ(n))nmﬂmw using (10)

Update (b“l(n))nEﬂO,N—k—]]] using (11)
Update D, using (16)

5. References

Burg, J.P. (1975). Maximum Entropy Spectral Anayswailable online at
http://sepwww.stanford.edu/theses/sep06/

Claerbout, J. (1997). Burg Spectral Estimation.ika#de online at
http://sepwww.stanford.edu/sep/prof/fgdp/c7/paptgniimode3.html

Collomb, C. (2009). Linear Prediction and Levinddarbin Algorithm. Available
online at
http://ccollomb.free.fr/technotes/A%20tutorial%20620linear%20prediction%20an
d%20Levinson-Durbin.pdf

Hayes, M.H. (2002). Statistical Digital Signal Pessing and Modeling. Wileys &
Sons.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., iit@ry, B.P. (2002). Numerical
Recipes in C++. Cambridge University Press.

6. Appendix. Non optimized C++ code

#include <math.h>
#include <vector>

using namespace std;
/I Returns in vector coefficients calculated using Burg algorithm applied to the input source data x
void BurgAlgorithm(vector<double> &coeffs, const vector<double> &x)
/I GET SIZE FROM INPUT VECTORS
size_t N = x.size() - 1;
size_t m = coeffs.size();
/I INITIALIZE Ak
vector<double> Ak(m + 1, 0.0);
Ak[0]=1.0;
/I INITIALIZE fand b
vector<double> f(x);

vector<double> b(x);

/I INITIALIZE Dk
double Dk = 0.0;
for (size_tj=0;j<=N;j++)

Dk +=2.0*f[j1*f[j];

}
Dk-=f[0]*f0]+b[N]*b[NJ;

// BURG RECURSION
for (size_tk =0; k <m; k++)
{
/l COMPUTE MU
double mu = 0.0;
for (size_tn=0;n<=N-k-1;n++)
{

mu+=fln+k+1]*b[n];
}
mu *=-2.0 / Dk;

/I UPDATE Ak
for(size_tn=0;n<=(k+1)/2;n++)
{
doubletl =Ak[n]+mu*Ak[k+1-n];
doublet2=Ak[k+1-n]+mu*Ak[n];
AK[n]=1t1;
Ak[k+1-n]=t2;
}

/ UPDATE fand b
for (size_tn=0;n<=N-k-1;n++)

doubletl=fl[n+k+1]+mu*b[n];
doublet2=b[n]+mu*fin+k+1];
fin+k+1]=t1;

b[n]=t2;

/I UPDATE Dk
Dk=(1.0-mu*mu)*Dk-fk+1]*fk+1]-b[N-k-1]*b[N-k-1];
}

/I ASSIGN COEFFICIENTS
coeffs.assign(++Ak.begin(), Ak.end());

}

/I Example program using Burg’s algorithm

int main(int argc, char *argv[])

{
/| CREATE DATA TO APPROXIMATE
vector<double> original(128, 0.0);
for (size_ti=0; i< original.size(); i++)

original[i] =cos(i*0.01) + 0.75 *cos(i * 0.03)
+ 0.5 *cos(i*0.05) +0.25 *cos(i*0.11);
}

/I GET LINEAR PREDICTION COEFFICIENTS
vector<double> coeffs(4, 0.0);
BurgAlgorithm(coeffs, original);

/l LINEAR PREDICT DATA
vector<double> predicted(original);
size_t m = coeffs.size();

for (size_ti=m; i < predicted.size(); i++)

predicted[i] = 0.0;
for (size_tj=0;j<m;j++)

predicted[i] -= coeffs[j] * original[i-1-j];

10

}

/I CALCULATE AND DISPLAY ERROR

double error = 0.0;

for (size_ti=m; i < predicted.size(); i++)

{
printf("Index: %.2d / Original: %.6f / Predicted: %.6f\n", i, original[i], predicted[i]);
double delta = predicted[i] - original[i];
error += delta * delta;

printf("Burg Approximation Error: %f\n", error);

return O;

11

