
 1

A tutorial on inverting 3 by 3 matrices with cross products

By Cedrick Collomb1

Abstract. This tutorial introduces the idea of inverting a 3 by 3 matrix and calculating its
determinant with cross products hopefully in a simple manner intelligible to any reader with
minimal mathematical and engineering skills. The formulas are derived twice with different
approaches and every step is purposely made unnecessarily detailed for ease of understanding.
The goal of this document is to help the reader implement and use the ideas behind this
tutorial immediately after reading it.

1. Introduction

The inversion of matrices is a recurring step in several Mathematics and Computer
Science algorithms. Although there already exist several generic algorithms for the
inversion of matrices, there are several domains such as Embedded software, Computer
Graphics and Video Games for which performance is critical and for which generic
algorithms used with low dimension matrices are not good enough. A subset of the
performance critical problems encountered in those domains can be reduced and solved
by a linear system of size 3 by 3; therefore the need for an efficient way to inverse a 3 by
3 matrix. On top of that hardware SIMD architectures have been providing for several
years the means to compute cross products very efficiently, therefore making the
technique introduced in this tutorial both a simple and efficient method.

The rest of the tutorial is organized as follow: Section 2 introduces the theory behind
general square matrix inversion. Section 3 introduces the difference between theory and
in use algorithms. Section 4 simplifies the results of Section 2 for small 3 by 3 matrices.
Section 5 shows how to achieve the same results as Section 4 using cross products.
Section 6 concludes this tutorial.

2. Basic linear algebra refresher

Let M be a square matrix of dimension n . We note ()ijM m= with � �1,i n∈

representing the row indices and � �1,j n∈ representing the column indices. M can also

be visualized in the following form
11 1

1

n

n nn

m m

M

m m

 
 =  
 
 

…

⋮ ⋱ ⋮

⋯

. Notice that 1nm is the last

element of the first line and 1nm is the first element of the last line.

1 ccollomb@yahoo.com / http://ccollomb.free.fr/

 2

Although outside the scope of this tutorial2 we can demonstrate that M is invertible if
and only if its determinant that will be referenced as ()det M is not zero. When M is

invertible, its inverse is written as 1M − and can be determined by the following formula:

 1 1
()

det()
M adj M

M
− = (1)

The notation ()adj M represents the adjugate matrix of M . The formula means that the
inverse of M is the adjugate scaled by the inverse of the determinant which is a scalar.
The adjugate and determinant still need to be explained so that the previous formula
makes sense and be at all useable.

The adjugate of M is also a square matrix of dimension n , and its elements ija are

defined by the following formula: ij jia c= (notice that i and j are inverted on the right

hand side of the equation so that to transpose the matrix). The coefficients ijc are called

cofactors and are defined with the determinant of the square matrix of dimension 1n −
created by removing the line i and column j from M .

11 1, 1 1, 1 1

1,1 1, 1 1, 1 1,

1,1 1, 1 1, 1 1,

, 1 , 1

(1) det

j j n

i i j i j i ni j
ij

i i j i j i n

nn n j n j nn

m m m m

m m m m
c

m m m m

m m m m

− +

− − − − + −+

+ + − + + +

− +

 
 
 
 

= −  
 
 
  
 

⋯ ⋯

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

⋯ ⋯

⋯ ⋯

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

⋯ ⋯

 (2)

The determinant of M can be calculated with the following formula:

1

det()
n

ij ij
i

M m c
=

=∑ (3)

The choice of j in (3) does not matter and for a matrix of dimension one, 11det()M m= .

As you might have noticed this create a recursive formula since det()M requires the

value of the cofactors ijc , and the cofactors are defined with determinants! However you

can also notice that the size of the matrices involved in the cofactor is always one less
than the size of the matrix of which we calculate the determinant. Therefore the recursion
will reach matrices of size one and therefore will end.

2 I recommend any good Linear Algebra course book, for French readers [1] is a good reference

 3

3. Matrix inversion in practice

Although the inversion of matrices with adjugate has theoretical value, it is important to
mention that this form is very rarely used in practice to inverse matrices.

For several classes of problem inversing the matrix just to find one x so that Mx y=
when you have M and y can be prohibitory expensive, and it makes more sense to
create iterative algorithms that converge to x . The most common methods3 to proceed
this way are Jacobi, Gauss-Seidel and the Conjugate gradient.

Even for the cases where the inverse is really needed there are usually better algorithms.
The most common methods4 are Gauss-Jordan, Shipley-Coleman [4], LU decomposition,
QR decomposition.

4. The 3 by 3 case

If we apply (2) and (3) to the square matrix
11 12 13

21 22 23

31 32 33

m m m

M m m m

m m m

 
 =  
 
 

, we get the following:

 11 11 21 21 31 31det()M m c m c m c= + + (4)

 22 231 1
11 22 33 32 23

32 33

(1) det
m m

c m m m m
m m

+  
= − = − 

 
 (5)

 12 132 1
21 32 13 12 33

32 33

(1) det
m m

c m m m m
m m

+  
= − = − 

 
 (6)

 12 133 1
31 12 23 22 13

22 23

(1) det
m m

c m m m m
m m

+  
= − = − 

 
 (7)

 21 231 2
12 31 23 21 33

31 33

(1) det
m m

c m m m m
m m

+  
= − = − 

 
 (8)

 11 132 2
22 11 33 31 13

31 33

(1) det
m m

c m m m m
m m

+  
= − = − 

 
 (9)

 11 133 2
32 13 21 11 23

21 23

(1) det
m m

c m m m m
m m

+  
= − = − 

 
 (10)

3 See [2] for a good start with common methods for solving linear systems and their descriptions.
4 See [3] for a good start with matrix inversion methods.

 4

 21 221 3
13 21 32 31 22

31 32

(1) det
m m

c m m m m
m m

+  
= − = − 

 
 (11)

 11 122 3
23 31 12 11 32

31 32

(1) det
m m

c m m m m
m m

+  
= − = − 

 
 (12)

 11 123 3
33 11 22 21 12

21 22

(1) det
m m

c m m m m
m m

+  
= − = − 

 
 (13)

Using (5), (6) and (7) with (4) gives:

 () () ()11 22 33 32 23 21 32 13 12 33 31 12 23 22 13det()M m m m m m m m m m m m m m m m= − + − + − (14)

Using (5), (6), (7), (8), (9), (10), (11), (12) and (13) with (1) gives:

22 33 32 23 32 13 12 33 12 23 22 13

1
31 23 21 33 11 33 31 13 13 21 11 23

21 32 31 22 31 12 11 32 11 22 21 12

1

det()

m m m m m m m m m m m m

M m m m m m m m m m m m m
M

m m m m m m m m m m m m

−

− − − 
 = − − − 
 − − − 

 (15)

You can verify by hand that 1

3MM I− = , by multiplying M by 1M − .

5. Calculating the determinant with a dot product and a cross product

Although the formula (15) can be optimized, it is based on scalar operations and do not
take advantage of SIMD features commonly available on most CPUs. On some processor
architectures an alternative formulation using SIMD can provide more efficient results.

A common feature with SIMD is the availability of vectors of several dimensions that
stand for the MD of Multiple Data in SIMD, in most common platforms available today
those vectors are four dimensional vectors storing floating point values or 32 bits integers.

Stepping back from the final form reached in the last formula and looking at (4), we can
see that det()M looks like a dot product of two three-dimensional vectors. Defining

11

1 12

13

m

C m

m

 
 =  
  

 which is the first column of M , and []1 11 21 31R c c c= which is the first

row of ()adj M , we notice that 1 1det()M R C= or using a dot product form:

 1 1det() .TM R C= (16)

 5

Now if we look carefully at 1
TR we get:

11 22 33 32 23 12 13

1 21 32 13 12 33 22 23 2 3

31 12 23 22 13 32 33

T

c m m m m m m

R c m m m m m m C C

c m m m m m m

−       
       = = − = ∧ = ∧       
       −       

 (17)

2C and 3C the second and third rows of M , therefore
12

2 22

32

m

C m

m

 
 =  
  

 and
13

3 23

33

m

C m

m

 
 =  
  

.

Therefore using (17) in (16) gives:

 ()1 2 3det() .M C C C= ∧ (18)

6. Inverting the matrix with cross products

The formula (18) is quite simple and nice. Moreover through the calculus we also
realized that the first row of ()adj M was the cross product of the second and third
columns of M, which was interesting and encourage to look at the other rows of ()adj M .

If we call respectively 2R and 3R the second and third rows of ()adj M , and call

respectively 2C and 3C the second and third rows of ()adj M

12 31 23 21 33 13 11

2 22 11 33 31 13 23 21 3 1

32 13 21 11 23 33 31

T

c m m m m m m

R c m m m m m m C C

c m m m m m m

−       
       = = − = ∧ = ∧       
       −       

 (19)

12 21 32 31 22 11 12

3 22 31 12 11 32 21 22 1 2

32 11 22 21 12 31 32

T

c m m m m m m

R c m m m m m m C C

c m m m m m m

−       
       = = − = ∧ = ∧       
       −       

 (20)

Using (17), (18), (19) and (20) we get the elegant and SIMD friendly formula:

 () ()1
2 3 3 1 1 2

1 2 3

1

.
T

M C C C C C C
C C C

− = ∧ ∧ ∧
∧

 (21)

 6

7. An alternative way to get the cross product inversion formula

The cross product of two vectors is by definition normal to both vectors used to calculate
the cross product, if we choose iC and jC with { } { }(,) 1, 2,3 1, 2,3i j ∈ × then

 (). 0i i jC C C∧ = and (). 0j i jC C C∧ = (22)

If we write two matrices A and B with the following rows and columns notations:

1

2

3

A

A A

A

 
 =  
  

, where 1A , 2A and 3A are three dimensional horizontal vectors.

[]1 2 3B B B B= , where 1B , 2B and 3B are three dimensional vertical vectors.

Then []
1 1 1 1 2 1 3

2 1 2 3 2 1 2 2 2 3

3 3 1 3 2 3 3

. . .

. . .

. . .

T T T

T T T

T T T

A A B A B A B

AB A B B B A B A B A B

A A B A B A B

  
  = =   
     

 (23)

Imagine that B is M and we want A to be its inverse 1M − .

So we want

1 0 0

0 1 0

0 0 1

AB

 
 =  
  

, therefore we need to make sure that 1 2. 0TA B = and

1 3. 0TA B = . We know 2B and 3B since they are columns of M, and we want to find a

vector that is normal to both.

Using (22) it is very easy with ()1 1 2 3^TA k B B= . Following the same method we can

identify ()2 2 3 1^TA k B B= and ()3 3 1 2^TA k B B= . Therefore

 () () ()1 2 3 2 3 1 3 1 2^ ^ ^
T

A k B B k B B k B B=    (24)

We now need to identify 1k , 2k and 3k by using (24) in (23) which gives

()
()

()

1 1 2 3

2 2 3 1

3 3 1 2

. 0 0

0 . 0

0 0 .

k B B B

AB k B B B

k B B B

∧ 
 = ∧ 
 ∧ 

 7

Therefore

 ()1
1 2 3

1

.
k

B B B
=

∧
 (25)

 ()2
2 3 1

1

.
k

B B B
=

∧
 (26)

 ()3
3 1 2

1

.
k

B B B
=

∧
 (27)

Another interesting property if E, F, G are arbitrary vectors is that we can cycle vectors to
the left or to the right in the equation below.

 (). .() .()E F G F G E G E F∧ = ∧ = ∧ (28)

Note that we only need to demonstrate one equality, since changing variable names leads
to the third equality.

1

2

3

e

E e

e

 
 =  
  

 and
1 1 2 3 3 2

2 2 3 1 1 3

3 3 1 2 2 1

f g f g f g

F G f g f g f g

f g f g f g

−     
     ∧ = ∧ = −     
     −     

, therefore

 () () () ()1 2 3 3 2 2 3 1 1 3 3 1 2 2 1.E F G e f g f g e f g f g e f g f g∧ = − + − + − (29)

Expanding (29) gives

 () 1 2 3 1 3 2 2 3 1 2 1 3 3 1 2 3 2 1.E F G e f g e f g e f g e f g e f g e f g∧ = − + − + − (30)

Factoring (30) by 1f , 2f and 3f gives

 () () () ()1 3 2 2 3 2 1 3 3 1 3 2 1 1 2.E F G f e g e g f e g e g f e g e g∧ = − + − + − (31)

1 1 2 3 3 2

2 2 3 1 1 3

3 3 1 2 2 1

g e g e g e

G E g e g e g e

g e g e g e

−     
     ∧ = ∧ = −     
     −     

 therefore see from (31) that (). .()E F G F G E∧ = ∧ .

Using (28) with (25), (26) and (27) we get

 ()1 2 3
1 2 3

1

.
k k k

B B B
= = =

∧
 (32)

 8

And finally using (32) and (24) we reach the same result as in the previous section

() []2 3 3 1 1 2
1 2 3

1
^ ^ ^

.
T

A B B B B B B
B B B

=
∧

8. Conclusion

This document has shown with two distinct approaches that it is possible to invert a three
by three matrix with three cross products, one dot product and a matrix transpose. It has
also shown that the determinant of the same matrix could be calculated with one cross
product and one dot product.

Although inverting a matrix is a solved problem, finding optimal algorithms is still an
unsolved problem. Of related importance is the fact that the computing complexity of
matrix inversion is equivalent to matrix multiplication 5 , and also equivalent to the
complexity of solving a collection of linear equations and computing the determinant of a
matrix6. Therefore any progress made by any of those area of research immediately will
benefit the other areas.

A lot of progress has been made since the seminal discovery [7], made by Strassen in
1969. However there is still major interest to investigate and discover new and improved
algorithms to address those areas, and the reader of this tutorial can take part in this
research effort.

9. References

1. J.M Arnaudies, Cours de Mathematiques T.1 Algebre, Bordas (1993)
2. R. Barrett et al., Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods, 2nd Edition, SIAM (1994)
3. W.H. Press et al., Numerical Recipes in C++: The Art of Scientific Computing,
Cambridge University Press (2002)
4. J.P. Pante, Computer Algorithms in Power System Analysis, World Wide Web site at
the address http://www.geocities.com/SiliconValley/Lab/4223/fault/ach03.html, (1999)
5. T.H. Cormen, et al., Introduction to Algorithms, Second Edition, MIT Press and
McGraw-Hill (2001)
6. V. Pan, How can we speed up matrix multiplication?, SIAM Rev. 26 (1984)
7. V. Strassen, Gaussian Elimination is not Optimal, Numer. Math. (1969)

5 See [5] for more details.
6 See [6] for more details.

