
 1

Linear Prediction and Levinson-Durbin Algorithm

Cedrick Collomb
http://ccollomb.free.fr/
Copyright © 2009. All Rights Reserved.

Created: February 3, 2009
Last Modified: November 12, 2009

Contents

1. Description of Linear Prediction ... 1
2. Minimizing the error ... 2

a. Relations between coefficients an ... 2

b. Solving for the coefficients an .. 2

3. Levinson-Durbin recursion ... 3
a. Solving the size one problem ... 3
b. Solving the size k+1 problem ... 4
c. Summary of the algorithm .. 6

4. Appendix. Non optimized C++ code .. 6

1. Description of Linear Prediction

Given a discrete set of original values ()
� �0,n n M

y
∈

 which we extend to ()n n
y

∈Z
 with

an infinite number of zeroes, we would like to find the best k coefficients ()
� �1,n n k

a
∈

that will approximate ny by
1

k

i n i
i

a y −
=

−∑ . A common way to define best is to use the

least-squares sense. Which means finding ()
� �1,n n k

a
∈

 so that to minimize the sum of

the squares of the error between the original and approximated values.

2 2

1 1

k k

n i n i n i n i
n i n i

E y a y y a y
∞ ∞

− −
=−∞ = =−∞ =

 = − − = +

∑ ∑ ∑ ∑

Defining 0 1a = gives the simpler
2

0

k

i n i
n i

E a y
∞

−
=−∞ =

 =

∑ ∑ which is the value we

would like to minimize.

 2

2. Minimizing the error

a. Relations between coefficients an

At E's minimum for � �1,j k∈ we have 0
j

E

a

∂ =
∂

. Calculating the partial derivatives

of E gives

2 2

0 0

0

2 0

k k

i n i i n i k
n i i

n j i n i
n n ij j

a y a y

y a y
a a

∞

− −∞ ∞
=−∞ = =

− −
=−∞ =−∞ =

 ∂ ∂ = = = ∂ ∂

∑ ∑ ∑
∑ ∑ ∑ .

Although the sum is written as infinite, it is finite since all terms vanish to zero at

some point, therefore we can swap the two sum signs and get
0

2 0
k

i n j n i
i n

a y y
∞

− −
= =−∞

=∑ ∑ .

Which can be rewritten
0

0
k

i n n j i
i n

a y y
∞

+ −
= =−∞

=∑ ∑ .

Defining l n n l
n

R y y
∞

+
=−∞

= ∑ (1)

I

t takes the final following form � �
0

1, , 0
k

i j i
i

j k a R −
=

∀ ∈ =∑ .

Which can we presented in the matrix form 0kMA = with

1 0 1 1

2 1 0 2

1 2 2 1

1 1 0

k

k

k k

k k

R R R R

R R R R

M

R R R R

R R R R

−

−

− −

−

 =

⋯

⋯

⋮ ⋮ ⋮ ⋱ ⋮

⋯

⋯

 and

1

2

1

k

k

a

A a

a

 =

⋮

b. Solving for the coefficients an

The matrix M has k+1 columns and k lines. The system is not under determined,
however in order to solve it, it is more convenient to make the system under a square
Matrix form.

We could rewrite 0kMA = into a square system easily as below, however there is an

 3

easier and better although less direct way to solve this system.

0 1 1 1 0

1 0 2 2 1

1 2 0 1

k

k

k k k k

R R R a R

R R R a R

R R R a R

−

−

− − −

 = −

⋯

⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋮

⋯

Looking at M, we can notice that M is very close to be a Toeplitz symmetric Matrix,
with only the top row missing. We also notice that expending the top row would
complete it into a square Matrix and system.

0

0

0

k

k k

E

N A

 =

⋮

 with

0 1

1 0 1

1 0

k

k
k

k k

R R R

R R R
N

R R R

−

−

 =

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 and
1

2

1

k

k

a

A a

a

 =

⋮

We do not know the value of kE at that point since it is a function of kA and the

coefficients ()
� �0;j j k

R
∈

.

This is a regular square linear system that we can not solve with the usual linear
system solver. However this system being a Toeplitz matrix, can actually be solved
better and quicker with a very simple recursive method called the Levinson-Durbin
recursion.

3. Levinson-Durbin recursion

The basic simple ideas behind the recursion are first that it is easy to solve the system
for 1k = , and second that it is also very simple to solve for a 1k + coefficients
sized problem when we have solved a for a k coefficients sized problem. In general
none of the coefficients of the different sized problem match, so it is not a way to
calculate 1ka + but a way to calculate the whole vector 1kA + as a function of 1kN + ,

kE and kA . Thinking about it Levinson-Durbin induction would be a better name.

a. Solving the size one problem

We are looking for 1
1

1
A

a

=

 so that 1
1 1 0

E
N A

=

 with 0 1
1

1 0

R R
N

R R

=

 and 1E is

 4

not necessary at this stage. The dot product of the second line of 1N and 1A gives

1 0 1 0R R a+ = , with 2
0 0n

n

R y
∞

=−∞
= >∑ .

Therefore

 1
1

0

R
a

R
= − (2)

Therefore, we have found 1
1

1
A

a

=

 and also

 1 0 1 1E R R a= + (3)

b. Solving the size k+1 problem

Suppose that we have solved the size k problem and have found kA , kN and kE .

Then we have

0 1
1

1 0 1
2

1 0

1

0

0

0

k
k

k

k k
k

E
R R R

a
R R R

a

R R R
a

−

−

 =

⋯

⋯

⋮ ⋮ ⋱ ⋮
⋮ ⋮

⋯

.

1kN + has one more row and column than kN so we can not apply it directly to kA ,

however if we expend kA with a zero and call this vector 1kU + we can apply 1kN +

to it and we get the following interesting result

0 1 1 1

1 0 2

1 0

1
0

1
0

0

0

0

k

k

k

k k k k

j k j
j

E

R R R a

R R R a

R R R a

a R

+

+

+ −
=

 =

∑

⋯

⋯
⋮

⋮ ⋮ ⋱ ⋮ ⋮

⋯

Since the matrix is symmetric, we also have something remarkable when reversing the
order of coefficients of 1kU + and calling this vector 1kV + .

 5

1
0

0 1 1

1 0

2

1 0 1

0

0

0

0
1

k

j k j
j

k k

k

k k

k

a R

R R R a

R R R

a

R R R a

E

+ −
=

+

+

 =

∑
⋯

⋯ ⋮
⋮

⋮ ⋮ ⋱ ⋮

⋯

We can notice that a linear combination 1 1k kU Vλ+ ++ is of the form wanted for 1kA +

since the first element is a 1 for all values of λ . Now if there was a value of λ for

which 1 1()k kN U λ+ + + would look like

1

0

0

0

kE +

⋮

, 1kE + not being known at this stage,

that would mean that we have found 1kA + .

Calculating 1 1()k kN U λ+ + + gives

1
0

0 1 1 1

1 0 2 1

1 0 1

1
0

1

0

0

0

k

k j k j
j

k k

k k

k k k

k

j k j k
j

E a R

R R R a a

R R R a a

R R R a a

a R E

λ

λ
λ

λ
λ

λ

+ −
=

+

−

+

+ −
=

 +

 + + = +

 +

∑

∑

⋯

⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋮

⋯

So we just need to find λ satisfying 1
0

0
k

j k j k
j

a R Eλ+ −
=

+ =∑ which is trivial.

Therefore
1

0

k

j k j
j

k

a R

E
λ

+ −
=

−
=
∑

 (4)

And also 1 1 1k k kA U Vλ+ + += + (5)

Finally ()2
1 1

0

1
k

k k j k j k
j

E E a R Eλ λ+ + −
=

= + = −∑ (6)

.

 6

c. Summary of the algorithm

• Choose m the number of coefficients wanted

• Compute all the ()
� �0;j j m

R
∈

 using (1)

• Compute 1A using (2)

• Compute 1E using (3)

• For k from 1 to m
• Calculate λ using (4)
• Calculate 1kU + , 1kV + , 1kA + using (5)

• Update 1kE + using (6)

4. Appendix. Non optimized C++ code

#include <math.h>
#include <vector>

using namespace std;

// Returns in vector linear prediction coefficients calculated using Levinson Durbin

void ForwardLinearPrediction(vector<double> &coeffs, const vector<double> &x)
{
 // GET SIZE FROM INPUT VECTORS
 size_t N = x.size() - 1;
 size_t m = coeffs.size();

 // INITIALIZE R WITH AUTOCORRELATION COEFFICIENTS
 vector<double> R(m + 1, 0.0);
 for (size_t i = 0; i <= m; i++)
 {
 for (size_t j = 0; j <= N - i; j++)
 {
 R[i] += x[j] * x[j + i];
 }
 }

 // INITIALIZE Ak
 vector<double> Ak(m + 1, 0.0);
 Ak[0] = 1.0;

 // INITIALIZE Ek
 double Ek = R[0];

 // LEVINSON-DURBIN RECURSION
 for (size_t k = 0; k < m; k++)
 {
 // COMPUTE LAMBDA
 double lambda = 0.0;
 for (size_t j = 0; j <= k; j++)
 {
 lambda -= Ak[j] * R[k + 1 - j];

 7

 }
 lambda /= Ek;

 // UPDATE Ak
 for (size_t n = 0; n <= (k + 1) / 2; n++)
 {
 double temp = Ak[k + 1 - n] + lambda * Ak[n];
 Ak[n] = Ak[n] + lambda * Ak[k + 1 - n];
 Ak[k + 1 - n] = temp;
 }

 // UPDATE Ek
 Ek *= 1.0 - lambda * lambda;
 }

 // ASSIGN COEFFICIENTS
 coeffs.assign(++Ak.begin(), Ak.end());
}

// Example program using Forward Linear Prediction

int main(int argc, char *argv[])
{
 // CREATE DATA TO APPROXIMATE
 vector<double> original(128, 0.0);
 for (size_t i = 0; i < original.size(); i++)
 {
 original[i] = sin(i * 0.01) + 0.75 * sin(i * 0.03)
 + 0.5 * sin(i * 0.05) + 0.25 * sin(i * 0.11);
 }

 // GET FORWARD LINEAR PREDICTION COEFFICIENTS
 vector<double> coeffs(4, 0.0);
 ForwardLinearPrediction(coeffs, original);

 // PREDICT DATA LINEARLY
 vector<double> predicted(original);
 size_t m = coeffs.size();
 for (size_t i = m; i < predicted.size(); i++)
 {
 predicted[i] = 0.0;
 for (size_t j = 0; j < m; j++)
 {
 predicted[i] -= coeffs[j] * original[i - 1 - j];
 }
 }

 // CALCULATE AND DISPLAY ERROR
 double error = 0.0;
 for (size_t i = m; i < predicted.size(); i++)
 {
 printf("Index: %.2d / Original: %.6f / Predicted: %.6f\n", i, original[i], predicted[i]);
 double delta = predicted[i] - original[i];
 error += delta * delta;
 }
 printf("Forward Linear Prediction Approximation Error: %f\n", error);

 return 0;
}

