Linear Prediction and Levinson-Durbin Algorithm

Cedrick Collomb
http://ccollomb.free.fr/
Copyright © 2009. All Rights Reserved.

Created: February 3, 2009
Last Modified: November 12, 2009

Contents

1. Description of Linear Prediction... 1
2. Minimizing the error ... 2

b. Solving for the coefficients a_{n}... 2
3. Levinson-Durbin recursion .. 3
a. Solving the size one problem ... 3
b. Solving the size $\mathrm{k}+1$ problem... 4
c. Summary of the algorithm.. 6
4. Appendix. Non optimized C++ code ... 6

1. Description of Linear Prediction

Given a discrete set of original values $\left(y_{n}\right)_{n \in \llbracket 0, M]}$ which we extend to $\left(y_{n}\right)_{n \in \mathbb{Z}}$ with an infinite number of zeroes, we would like to find the best k coefficients $\left(a_{n}\right)_{n \in \llbracket 1, k \rrbracket}$ that will approximate y_{n} by $-\sum_{i=1}^{k} a_{i} y_{n-i}$. A common way to define best is to use the least-squares sense. Which means finding $\left(a_{n}\right)_{n \in \llbracket 1, k]}$ so that to minimize the sum of the squares of the error between the original and approximated values.

$$
E=\sum_{n=-\infty}^{\infty}\left(y_{n}-\left(-\sum_{i=1}^{k} a_{i} y_{n-i}\right)\right)^{2}=\sum_{n=-\infty}^{\infty}\left(y_{n}+\sum_{i=1}^{k} a_{i} y_{n-i}\right)^{2}
$$

Defining $a_{0}=1$ gives the simpler $E=\sum_{n=-\infty}^{\infty}\left(\sum_{i=0}^{k} a_{i} y_{n-i}\right)^{2}$ which is the value we would like to minimize.

2. Minimizing the error

a. Relations between coefficients $\mathbf{a}_{\boldsymbol{n}}$

At E's minimum for $j \in \llbracket 1, k \rrbracket$ we have $\frac{\partial E}{\partial a_{j}}=0$. Calculating the partial derivatives of E gives $\frac{\partial \sum_{n=-\infty}^{\infty}\left(\sum_{i=0}^{k} a_{i} y_{n-i}\right)^{2}}{\partial a_{j}}=\sum_{n=-\infty}^{\infty} \frac{\partial\left(\sum_{i=0}^{k} a_{i} y_{n-i}\right)^{2}}{\partial a_{j}}=\sum_{n=-\infty}^{\infty} 2 y_{n-j}\left(\sum_{i=0}^{k} a_{i} y_{n-i}\right)=0$.

Although the sum is written as infinite, it is finite since all terms vanish to zero at some point, therefore we can swap the two sum signs and get $2 \sum_{i=0}^{k} a_{i} \sum_{n=-\infty}^{\infty} y_{n-j} y_{n-i}=0$.

Which can be rewritten $\sum_{i=0}^{k} a_{i} \sum_{n=-\infty}^{\infty} y_{n} y_{n+j-i}=0$.

Defining

$$
\begin{equation*}
R_{l}=\sum_{n=-\infty}^{\infty} y_{n} y_{n+l} \tag{1}
\end{equation*}
$$

I
t takes the final following form $\forall j \in \llbracket 1, k \rrbracket, \sum_{i=0}^{k} a_{i} R_{|j-i|}=0$.
Which can we presented in the matrix form $M A_{k}=0$ with

$$
M=\left[\begin{array}{ccccc}
R_{1} & R_{0} & R_{1} & \cdots & R_{k-1} \\
R_{2} & R_{1} & R_{0} & \cdots & R_{k-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
R_{k-1} & R_{k-2} & \cdots & R_{2} & R_{1} \\
R_{k} & R_{k-1} & \cdots & R_{1} & R_{0}
\end{array}\right] \text { and } A_{k}=\left[\begin{array}{c}
1 \\
a_{1} \\
a_{2} \\
\vdots \\
a_{k}
\end{array}\right]
$$

b. Solving for the coefficients \mathbf{a}_{n}

The matrix M has $\mathrm{k}+1$ columns and k lines. The system is not under determined, however in order to solve it, it is more convenient to make the system under a square Matrix form.

We could rewrite $M A_{k}=0$ into a square system easily as below, however there is an
easier and better although less direct way to solve this system.

$$
\left[\begin{array}{cccc}
R_{0} & R_{1} & \cdots & R_{k-1} \\
R_{1} & R_{0} & \cdots & R_{k-2} \\
\vdots & \vdots & \ddots & \vdots \\
R_{k-1} & R_{k-2} & \cdots & R_{0}
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{k}
\end{array}\right]=-\left[\begin{array}{c}
R_{0} \\
R_{1} \\
\vdots \\
R_{k-1}
\end{array}\right]
$$

Looking at M, we can notice that M is very close to be a Toeplitz symmetric Matrix, with only the top row missing. We also notice that expending the top row would complete it into a square Matrix and system.

$$
N_{k} A_{k}=\left[\begin{array}{c}
E_{k} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right] \text { with } N_{k}=\left[\begin{array}{cccc}
R_{0} & R_{1} & \cdots & R_{k} \\
R_{1} & R_{0} & \cdots & R_{k-1} \\
\vdots & \vdots & \ddots & \vdots \\
R_{k} & R_{k-1} & \cdots & R_{0}
\end{array}\right] \text { and } A_{k}=\left[\begin{array}{c}
1 \\
a_{1} \\
a_{2} \\
\vdots \\
a_{k}
\end{array}\right]
$$

We do not know the value of E_{k} at that point since it is a function of A_{k} and the coefficients $\left(R_{j}\right)_{j \in[0 ; k]}$.

This is a regular square linear system that we can not solve with the usual linear system solver. However this system being a Toeplitz matrix, can actually be solved better and quicker with a very simple recursive method called the Levinson-Durbin recursion.

3. Levinson-Durbin recursion

The basic simple ideas behind the recursion are first that it is easy to solve the system for $k=1$, and second that it is also very simple to solve for a $k+1$ coefficients sized problem when we have solved a for a k coefficients sized problem. In general none of the coefficients of the different sized problem match, so it is not a way to calculate a_{k+1} but a way to calculate the whole vector A_{k+1} as a function of N_{k+1}, E_{k} and A_{k}. Thinking about it Levinson-Durbin induction would be a better name.

a. Solving the size one problem

We are looking for $A_{1}=\left[\begin{array}{c}1 \\ a_{1}\end{array}\right]$ so that $N_{1} A_{1}=\left[\begin{array}{c}E_{1} \\ 0\end{array}\right]$ with $N_{1}=\left[\begin{array}{ll}R_{0} & R_{1} \\ R_{1} & R_{0}\end{array}\right]$ and E_{1} is
not necessary at this stage. The dot product of the second line of N_{1} and A_{1} gives $R_{1}+R_{0} a_{1}=0$, with $R_{0}=\sum_{n=-\infty}^{\infty} y_{n}^{2}>0$.

Therefore

$$
\begin{equation*}
a_{1}=-\frac{R_{1}}{R_{0}} \tag{2}
\end{equation*}
$$

Therefore, we have found $A_{1}=\left[\begin{array}{c}1 \\ a_{1}\end{array}\right]$ and also

$$
\begin{equation*}
E_{1}=R_{0}+R_{1} a_{1} \tag{3}
\end{equation*}
$$

b. Solving the size $k+1$ problem

Suppose that we have solved the size k problem and have found A_{k}, N_{k} and E_{k}. Then we have

$$
\left[\begin{array}{cccc}
R_{0} & R_{1} & \cdots & R_{k} \\
R_{1} & R_{0} & \cdots & R_{k-1} \\
\vdots & \vdots & \ddots & \vdots \\
R_{k} & R_{k-1} & \cdots & R_{0}
\end{array}\right]\left[\begin{array}{c}
1 \\
a_{1} \\
a_{2} \\
\vdots \\
a_{k}
\end{array}\right]=\left[\begin{array}{c}
E_{k} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right] .
$$

N_{k+1} has one more row and column than N_{k} so we can not apply it directly to A_{k}, however if we expend A_{k} with a zero and call this vector U_{k+1} we can apply N_{k+1} to it and we get the following interesting result

$$
\left[\begin{array}{cccc}
R_{0} & R_{1} & \cdots & R_{k+1} \\
R_{1} & R_{0} & \cdots & R_{k} \\
\vdots & \vdots & \ddots & \vdots \\
R_{k+1} & R_{k} & \cdots & R_{0}
\end{array}\right]\left[\begin{array}{c}
1 \\
a_{1} \\
a_{2} \\
\vdots \\
a_{k} \\
0
\end{array}\right]=\left[\begin{array}{c}
E_{k} \\
0 \\
0 \\
\vdots \\
0 \\
\sum_{j=0}^{k} a_{j} R_{k+1-j}
\end{array}\right]
$$

Since the matrix is symmetric, we also have something remarkable when reversing the order of coefficients of U_{k+1} and calling this vector V_{k+1}.

$$
\left[\begin{array}{cccc}
R_{0} & R_{1} & \cdots & R_{k+1} \\
R_{1} & R_{0} & \cdots & R_{k} \\
\vdots & \vdots & \ddots & \vdots \\
R_{k+1} & R_{k} & \cdots & R_{0}
\end{array}\right]\left[\begin{array}{c}
0 \\
a_{k} \\
\vdots \\
a_{2} \\
a_{1} \\
1
\end{array}\right]=\left[\begin{array}{c}
\sum_{j=0}^{k} a_{j} R_{k+1-j} \\
0 \\
\vdots \\
0 \\
0 \\
E_{k}
\end{array}\right]
$$

We can notice that a linear combination $U_{k+1}+\lambda V_{k+1}$ is of the form wanted for A_{k+1} since the first element is a 1 for all values of λ. Now if there was a value of λ for which $N_{k+1}\left(U_{k+1}+\lambda\right) \quad$ would look like $\left[\begin{array}{c}E_{k+1} \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right], E_{k+1}$ not being known at this stage, that would mean that we have found A_{k+1}.

Calculating $N_{k+1}\left(U_{k+1}+\lambda\right)$ gives

$$
\left[\begin{array}{cccc}
R_{0} & R_{1} & \cdots & R_{k+1} \\
R_{1} & R_{0} & \cdots & R_{k} \\
\vdots & \vdots & \ddots & \vdots \\
R_{k+1} & R_{k} & \cdots & R_{0}
\end{array}\right]\left[\begin{array}{c}
1 \\
a_{1}+\lambda a_{k} \\
a_{2}+\lambda a_{k-1} \\
\vdots \\
a_{k}+\lambda a_{1} \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
E_{k}+\lambda \sum_{j=0}^{k} a_{j} R_{k+1-j} \\
0 \\
0 \\
\vdots \\
0 \\
\sum_{j=0}^{k} a_{j} R_{k+1-j}+\lambda E_{k}
\end{array}\right]
$$

So we just need to find λ satisfying $\sum_{j=0}^{k} a_{j} R_{k+1-j}+\lambda E_{k}=0 \quad$ which is trivial.

Therefore

$$
\begin{equation*}
\lambda=\frac{-\sum_{j=0}^{k} a_{j} R_{k+1-j}}{E_{k}} \tag{4}
\end{equation*}
$$

And also

$$
\begin{equation*}
A_{k+1}=U_{k+1}+\lambda V_{k+1} \tag{5}
\end{equation*}
$$

Finally

$$
\begin{equation*}
E_{k+1}=E_{k}+\lambda \sum_{j=0}^{k} a_{j} R_{k+1-j}=\left(1-\lambda^{2}\right) E_{k} \tag{6}
\end{equation*}
$$

c. Summary of the algorithm

- Choose m the number of coefficients wanted
- Compute all the $\left(R_{j}\right)_{j \in \llbracket 0 ; m]}$ using (1)
- Compute A_{1} using (2)
- Compute E_{1} using (3)
- For k from 1 to m
- Calculate λ using (4)
- Calculate $U_{k+1}, V_{k+1}, A_{k+1}$ using (5)
- Update E_{k+1} using (6)

4. Appendix. Non optimized C++ code

\#include <math.h>
\#include <vector>
using namespace std;

// Returns in vector linear prediction coefficients calculated using Levinson Durbin

void ForwardLinearPrediction(vector<double> \&coeffs, const vector<double> \&x)
\{
// GET SIZE FROM INPUT VECTORS
size_t N = x.size() - 1;
size_t $\mathrm{m}=$ coeffs.size();
// INITIALIZE R WITH AUTOCORRELATION COEFFICIENTS vector<double> $R(m+1,0.0)$; for (size_t $\mathrm{i}=0 ; \mathrm{i}<=\mathrm{m} ; \mathrm{i}++$)
\{
for (size_t $j=0 ; j<=N-i ; j++$)
\{
$R[i]+=x[j] * x[j+i] ;$
\}
\}
// INITIALIZE Ak
vector<double> $\operatorname{Ak}(\mathrm{m}+1,0.0)$;
$\operatorname{Ak}[0]=1.0$;
// INITIALIZE Ek
double Ek = R[0];
// LEVINSON-DURBIN RECURSION
for (size_t $k=0 ; k<m ; k++$)
\{
// COMPUTE LAMBDA
double lambda $=0.0$;
for (size_t $j=0 ; j<=k ; j++$)
\{
lambda $=A k[j]$ * $R[k+1-j] ;$

```
            }
            lambda /= Ek;
            // UPDATE Ak
            for (size_t n = 0; n <= (k+1)/ 2; n++ )
            {
                    double temp = Ak[k+1-n ] + lambda * Ak[n];
                    Ak[n] = Ak[n ] + lambda * Ak[k + 1-n ];
            Ak[k+1-n] = temp;
            }
            // UPDATE Ek
        Ek *= 1.0 - lambda * lambda;
    }
    // ASSIGN COEFFICIENTS
    coeffs.assign( ++Ak.begin(), Ak.end() );
}
// Example program using Forward Linear Prediction
int main( int argc, char *argv[] )
{
    // CREATE DATA TO APPROXIMATE
    vector<double> original( 128, 0.0 );
    for ( size_t i = 0; i < original.size(); i++ )
    {
        original[i] = sin( i * 0.01)+0.75* sin(i* 0.03)
            +0.5 * }\operatorname{sin}(\mp@subsup{i}{}{*}0.05)+0.25 * sin(i * 0.11)
    }
    // GET FORWARD LINEAR PREDICTION COEFFICIENTS
    vector<double> coeffs( 4, 0.0);
    ForwardLinearPrediction( coeffs, original );
    // PREDICT DATA LINEARLY
    vector<double> predicted( original );
    size_t m = coeffs.size();
    for ( size_t i = m; i < predicted.size(); i++ )
    {
        predicted[ [ ] = 0.0;
        for ( size_t j = 0; j < m; j++ )
        {
            predicted[ i ] -= coeffs[ j ] * original[ i-1-j ];
        }
    }
    // CALCULATE AND DISPLAY ERROR
    double error = 0.0;
    for ( size_t i = m; i < predicted.size(); i++ )
    {
    printf( "Index: %.2d / Original: %.6f / Predicted: %.6fln", i, original[ i ], predicted[ i ] );
    double delta = predicted[ i ] - original[ i ];
    error += delta * delta;
    }
    printf( "Forward Linear Prediction Approximation Error: %f\n", error );
    return 0;
}
```

