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A tutorial on trigonometric curve fitting 
 

By Cedrick Collomb1 
 

Abstract.  This tutorial introduces the concept and usefulness of approximating a signal by a 
sum of sinusoidal functions hopefully in a simple manner intelligible to any reader with 
minimal mathematical and engineering skills. The Prony algorithm for trigonometric curve 
fitting is explained in full detail, formulas are derived and every step is purposely made 
unnecessarily detailed for ease of understanding. Source code is provided as a way to skip the 
potential formula obfuscation in order to help the reader implement and use the ideas behind 
this tutorial immediately after reading this document.  

 
1. Introduction 

 
Joseph Fourier changed forever the mathematics and science landscape when he 
introduced to the world the fact that periodic functions could be expressed as 
trigonometric series, his discovery was so astonishing at the time that even some the most 
brilliant mathematicians of that period had some difficulties accepting his surprising 
results. Fourier’s theory generated interest to further attempt to break down a function as 
a sum of simple sinusoidal waves and thus gave rise to the field of Harmonic Analysis, 
which has major implications in a wide range of areas from audio analysis and synthesis 
to stock market analysis and prediction [1][2]. 
 
The discrete Fourier transform, a process to transform series of sample data to 
frequencies, is unfortunately tightly linked to its data window, which raise the issue of 
resolution constraints. New methods called high resolution methods have to be used in 
order to decompose signals with arbitrary frequencies. There exists a method invented by 
Prony [3] prior to Fourier’s discovery that can address this challenge, and that method is 
presented in this document. 
 
The rest of the tutorial is organized as follow:  Section 2 introduces the basic concept of 
trigonometric fitting. Section 3 explains how to solve for frequencies using Prony’s 
method. Section 4 explains how to find the amplitudes and phases. Section 5 concludes 
this tutorial. 

 
2. Trigonometric fitting 
 

Trigonometric fitting is a method to approximate a function f  by series of trigonometric 
functions. The approximation g of f can be written  

 ( ) ( )
1

cos
m

i i i
i

g x xρ ω ϕ
=

= +∑  (1) 

Wherem is the number of terms we want to approximate f  with, iρ  is the amplitude, iω  

is the frequency and iϕ  is the amplitude of the ith cosine function. 
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To transform the previous equation we need to use the following trigonometric identity. 
 
 ( ) ( ) ( ) ( ) ( )cos cos cos sin sina b a b a b+ = −  (2) 

 
Using identity (2) we can rewrite (1) as 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1

1 1

cos cos sin sin

cos cos sin sin

m

i i i i i
i

m m

i i i i i i
i i

g x x x

x x

ρ ω ϕ ω ϕ

ρ ϕ ω ρ ϕ ω

=

= =

= −  

= −

∑

∑ ∑
 

 
Therefore g  can also be written interchangeably with (1) as follow: 

 ( ) ( ) ( )
1 1

cos sin
m m

i i i i
i i

g x x xα ω β ω
= =

= +∑ ∑  (3) 

And in this case ( )cosi i iα ρ ϕ=  and ( )sini i iβ ρ ϕ= − . 

 
It is to be noted that only f  is known at this stage. A value of m has to be decided 
depending on the problem at hand or accuracy of approximation desired. If equation (1) 
is used ( )

� �1;i i m
ρ

∈
, ( )

� �1;i i m
ω

∈
 and ( )

� �1;i i m
ϕ

∈
 have to be determined. If equation (3) is used 

( )
� �1;i i m

ω
∈

, ( )
� �1;i i m

α
∈

 and ( )
� �1;i i m

β
∈

 have to be determined. 

  
3. Finding the frequencies ( ) � �1;i i m

ω ∈  

 
a. Prony’s reformulation of the problem 

 
Let 2p m= , the Prony method starts by replacing (3) by the following equation: 

 ( )
1

p
x

j j
j

g x zγ
=

=∑  (4) 

Where jγ  are complex numbers, ji

jz e θ= , with jθ  real numbers and 2 1i = − . 

 
If equation (4) can be solved and constrained so that to get couples of conjugate jγ  and 

jz , equation (4) can be transformed back into equation (3). 

 

For all index j  let there exists an index k  so that k jγ γ=  and k jz z=  then it results that 

( ) ( )2Re 2Re jixx x x x x x x
j j k k j j j j j j j j j j jz z z z z z z e θγ γ γ γ γ γ γ γ+ = + = + = =  and therefore 

 

 ( ) ( ) ( ) ( )( )2 Re cos Im sinx x
j j k k j j j jz z x xγ γ γ θ γ θ+ = −  (5) 
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b. Prony’s polynomial 
 

Prony’s original idea to solve (4) is to introduce the polynomial ( )P z  that has all the 

( )
� �1;j j p

z
∈

 for roots. 

 ( ) ( )
1

p

j
j

P z z z
=

= −∏  (6) 

There exists ( )
� �0;k k p

a
∈

 so that ( )
0

p
p k

k
k

P z a z −

=

=∑  (7) 

By definition ( ) 0jP z = therefore 
0

0
p

p k
k j

k

a z −

=

=∑  (8) 

 

Also by definition ji

jz e θ=  therefore 
1

ji

j
j

z e
z

θ−= = , and thus 
1

0
j

P
z

 
=  

 
. Which leads to 

the following equation: 
0 0 0

1 1
0

kp p p
j k

k k k jp k p p
k k kj j j

z
a a a z

z z z−
= = =

= = =∑ ∑ ∑ . 

Therefore 
0

0
p

k
k j

k

a z
=

=∑  (9) 

 

The polynomial ( )
0

p
k

k
k

Q z a z
=

=∑ in (9) has p roots as has ( )P z , moreover they are all 

equal to the roots of ( )P z . Therefore ( ) ( )Q z P zλ= . Rewriting ( )
0

p
k

p k
k

P z a z−
=

=∑  gives: 

For all � �0;k p∈  k p ka aλ −=  (10) 

 

Considering that ( )
� �1;j j p

z
∈

 contain couples of roots of the form ji

jz e θ= , ( )P z  can be  

transformed as follow: ( ) ( )( ) ( )( )2

1 1

j j j j j j

m m
i i i i i i

j j

P z z e z e z e e z e eθ θ θ θ θ θ− − −

= =

= − − = − + +∏ ∏ . 

Therefore ( ) ( )( )2

1

2cos 1
m

j
j

P z z zθ
=

= − +∏  (11) 

 
It follows that the ( )

� �0;k k p
a

∈
 are real and that 0 1a =  and 1pa = , therefore that 1λ = . 

 
Thus � �0;k p∀ ∈  k p ka a −=  (12) 
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c. Identifying Prony’s polynomial coefficients 
 
The next step is to find an equation that will help determine the ( )

� �0;k k p
a

∈
 coefficients. 

 

Using (4), (9) and the fact that ( ) 0jQ z =  gives: 

 

( ) ( )
0 0 1 1 0 1

p p p p p p
x k x k x

k k j j j j k j j j j
k k j j k j

a g x k a z z a z z Q zγ γ γ+

= = = = = =

+ = = =∑ ∑ ∑ ∑ ∑ ∑  

 

Therefore ( )
0

0
p

k
k

a g x k
=

+ =∑  (13) 

Using (12) and (13) gets ( ) ( )( ) ( )
1

0

0
m

k m
k

a g x k g x p k a g x m
−

=

+ + + − + + =∑  and since 

0 1a = , the following result defining ( )
� �1;k k m

a
∈

 can be reached: 

 ( ) ( ) ( )( ) ( ) ( )
1

1

m

m k
k

a g x m a g x k g x p k g x g x p
−

=

+ + + + + − = − − +∑  (14) 

 
The approximation g  of f is done at N  regularly spaced samples, with p N≤ . Most of 
the time when N  is large enough, equation (14) defines an over determined, over 
constrained linear equation, because it defines N p−  equations for only m unknown 
variables. There are several different ways to solve those linear systems. A simple and 
common method that is described in this tutorial is the Least-Squares (LS) method.  
 

d. Least-Squares method to identify the ( )
� �1;k k m

a
∈

 coefficients 

 
Since (14) gives too much data for not enough unknowns, an error function which is the 
sum of the square of residuals between the left and right sides of equation (14), allows to 
regroup everything under one sum and one line. 

 

 ( ) ( ) ( ) ( )( )
21

1, ,
1 0

N p m

m m k
x k

e a a a g x m a g x k g x p k
− −

= =

 = + + + + + − 
 

∑ ∑⋯
 (15) 

 

To minimize (15), the point ( )1, , ma a⋯  at which ( )1, , 0me a a∇ =⋯
 need to be found. It is 

equivalent to solve for all j  the following partial derivative equations: 

 
( )1, , 0m

j

e a a

a

∂
=

∂
⋯  (16) 
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To simplify the derivations lets define ( ) ( ) ( ),g kS x g x k g x p k= + + + − , equation (15)

can therefore be rewritten as ( ) ( ) ( )
21

1, , ,
1 0

N p m

m m k g k
x k

e a a a g x m a S x
− −

= =

 = + + 
 

∑ ∑⋯
 

It results that  ( ) ( ) ( )
1

, ,
1 0

2
N p m

g j m k g k
x kj

e
S x a g x m a S x

a

− −

= =

∂  = + + ∂  
∑ ∑  (17) 

And that ( ) ( ) ( )
1

,
1 0

2
N p m

m k g k
x km

e
g x m a g x m a S x

a

− −

= =

∂  = + + + ∂  
∑ ∑  (18) 

Using (16) and (17) the following linear equations for � �1; 1j m∈ −  can be found 

 

 ( ) ( ) ( ) ( ) ( )
1

, , ,0 ,
1 1 1

N p N pm

g j m k g k g g j
x k x

S x a g x m a S x S x S x
− −−

= = =

 + + = − 
 

∑ ∑ ∑  (19) 

 
Using (16) and (18) the following linear equations for j m=  can be found 
 

 ( ) ( ) ( ) ( ) ( )
1

, ,0
1 1 1

N p N pm

m k g k g
x k x

g x m a g x m a S x S x g x m
− −−

= = =

 + + + = − + 
 

∑ ∑ ∑  (20) 

 
Finally equations (19) and (20) can be put in matrix form. 
 

 

( ) ( )

( ) ( )

( ) ( )

,0 ,1
1

1

1 ,0 , 1
1

,0
1

N p

g g
x

N p

m g g m
x

m N p

g
x

S x S x

a

M
a S x S x

a

S x g x m

−

=

−

− −
=

−

=

 
 
  
  
   = −   
  
  
 +
  

∑

∑

∑

⋮
⋮

 (21) 

 

With 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

,1 ,1 , 1 ,1 ,1
1 1 1

,1 , 1 , 1 , 1 , 1
1 1 1

,1 , 1
1 1 1

N p N p N p

g g g m g g
x x x

N p N p N p

g g m g m g m g m
x x x

N p N p N p

g g m
x x x

S x S x S x S x g x m S x

M
S x S x S x S x g x m S x

S x g x m S x g x m g x m g x m

− − −

−
= = =

− − −

− − − −
= = =

− − −

−
= = =

 
+ 

 
 
 =  +
 
 
 + + + +
  

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

⋯

⋮ ⋱ ⋮ ⋮

⋯

⋯
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Although some source code is provided in the appendix, solving equation (21) is outside 
the scope of this tutorial but should not be a blocker for the reader since solving linear 
systems is well addressed in the literature; see [4], [5] and [6] for example. 
 

e. Solving the polynomial for frequencies 
 
This is the last part of the puzzle. At this stage the polynomial and its coefficients can be 

determined, however nothing guarantees that the roots will take the form ji

jz e θ= , nor 

that their conjugate will also be roots as desired initially. The necessary conditions to 
establish constraints on the ( )

� �1;k k m
a

∈
 have not been shown to be sufficient. Instead of 

doing so, stronger necessary conditions are going to be derived by transforming the 
polynomial in an alternative form. 
 

Decomposing (8) gives ( )
1

0 1

pm
p k m p k

k m k
k k m

P z a z a z a z
−

− −

= = +

= + +∑ ∑ , and using (12), it becomes 

( )
1

0 1

pm
p k m p k

k m p k
k k m

P z a z a z a z
−

− −
−

= = +

= + +∑ ∑ . Changing variables with k p k′ = − , gives 

k p k ′= −  and k′  goes from 0p p− =  to ( 1) 2 1 1p m m m m− + = − − = − . The equation 

can therefore be rewritten ( )
1 1

0 0

m m
p k m k

k m k
k k

P z a z a z a z
− −

′−
′

′= =

= + +∑ ∑ . The variable k′  can be 

renamed k  and the two sums can be regrouped since now they have similar bounds. 
 

 ( ) ( )
1

0

m
p k k m

k m
k

P z a z z a z
−

−

=

= + +∑  (22) 

Since the roots are to be of the form ji

jz e θ= , none of the roots will be zero and equation 

(22) can be factored by mz  which gives: 
 

( ) ( )
1 1

0 0

1m m
m m k k m m m k

k m k mm k
k k

P z z a z z a z a z a
z

− −
− − −

−
= =

    = + + = + +   
    

∑ ∑  

 

Moreover given that ( )( )1
2cosm k

j jm k
j

z m k
z

θ−
−+ = − , instead of solving for z  in ( )P z , 

the equation ( )( ) ( )( )
1

0

cos 2 cos
m

k m
k

R a m k aθ θ
−

=

= − +∑  can be used as a replacement. 

 
First ( )( )cosR θ  need to be expressed as a polynomial of ( )cos θ  using Chebyshev’s 

polynomials ( )nT x , which are defined so that ( )( ) ( )cos cosnT x nx= . The recursive 

formulation of Chebyshev’s polynomials is ( )0 1T x = , ( )1T x x=  and 

( ) ( ) ( )2 12n n nT x xT x T x+ += − .  
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Therefore ( )( ) ( )( )
1

0

cos 2 cos
m

k m k m
k

R a T aθ θ
−

−
=

= +∑  and a change of variable ( )cosy θ=  

can be applied to obtain the final form of the polynomial to solve. 
 

 ( ) ( )
1

0

2
m

k m k m
k

R y a T y a
−

−
=

= +∑  (23) 

 
It is interesting to note that Prony’s method first expanded from m  unknown frequencies 
to 2p m=  complex unknowns, but that (23) has brought it back to m  unknowns. 
 
The procedure to solve (23) is to expand the Chebyshev polynomials with the recursive 
formulas, multiply them by their respective ka  coefficients, and sum all the results to get 

the final polynomial ( )R y . When this is done any polynomial root solver can be used to 

get the y  values, finally the frequencies ( ) � �1;i i m
ω ∈ , are extracted by ( )1cosi iw y−= . 

 
Again, although some source code is provided in the appendix, solving equation (23) is 
outside the scope of this tutorial but should not be a blocker for the reader since solving 
polynomials is well addressed in the literature; see [5], [7], [8] and [8] for example. 

 
4. Finding the amplitudes and phases 
 

a. Finding the amplitudes ( ) � �1;i i m
α ∈  and ( ) � �1;i i m

β ∈  

 

Looking back at equation (3) (( ) ( ) ( )
1 1

cos sin
m m

i i i i
i i

g x x xα ω β ω
= =

= +∑ ∑ ), at this stage the 

frequencies that were required have been determined. Only the amplitudes for the cosine 
and sine series are left to be found. 
 
The Least-Squares method is again going to be used so that to minimize the sum of the 
square errors between f  and g  on the N  data samples. As in section 3.d an error 
function to be minimized is defined as follow: 
 

 ( ) ( ) ( )( )2

1

,
N

x

e g x f xα β
=

= −∑  (24) 

And using (3) ( ) ( ) ( ) ( )
2

1 1 1

, cos sin
N m m

i i i i
x i i

e x x f xα β α ω β ω
= = =

 = + − 
 

∑ ∑ ∑  (25) 

 
In order to minimize equation (25), a point ( )1 1, , , , ,m mα α β β… …  need to be found at 

which ( )1 1, , , , , 0m me α α β β∇ =… … , which is equivalent as to solve for all j : 
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( )1 1, , , , ,

0m m

j

e α α β β
α

∂
=

∂
… …

 (26) 

and 
( )1 1, , , , ,

0m m

j

e α α β β
β

∂
=

∂
… …

 (27) 

 

From (25)  ( ) ( ) ( ) ( )
1 1 1

2 cos cos sin
N m m

j i i i i
x i ij

e
x x x f xω α ω β ω

α = = =

∂  = + − ∂  
∑ ∑ ∑  (28) 

and ( ) ( ) ( ) ( )
1 1 1

2 sin cos sin
N m m

j i i i i
x i ij

e
x x x f xω α ω β ω

β = = =

∂  = + − ∂  
∑ ∑ ∑  (29) 

 
Therefore the following equations that are obtained by swapping the sums signs and by 
moving all the terms with ( )f x  on the right hand side of the equation need to be solved. 

 

 ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1

cos cos cos sin cos
m N m N N

i j i i j i j
i x i x x

x x x x x f xα ω ω β ω ω ω
= = = = =

+ =∑ ∑ ∑ ∑ ∑  (30) 

and ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1

sin cos sin sin sin
m N m N N

i j i i j i j
i x i x x

x x x x x f xα ω ω β ω ω ω
= = = = =

+ =∑ ∑ ∑ ∑ ∑  (31) 

 
Again both (30) and (31) define a linear system, and the algorithm to solve this system is 
strictly identical to the one used in section 3.d and requires the use of the same source 
code provided in the Appendix of this document.  
 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1
1

1

1

1
1

1

1

cos

cos

sin

sin

N

x

N

m
xm

N

x

m

N

m
x

x f x

x f x

M

x f x

x f x

ω

α

ω
α
β

ω

β

ω

=

=

=

=

 
 
 

   
   
   
   

=   
   
   
   
    

 
 
 

∑

∑

∑

∑

⋮

⋮

⋮

⋮

 (32) 

 
For space sake, let ( ) ( )cosc x x=  and ( ) ( )sins x x=  and M is defined as below. 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1

1 1 1 1

1 1 1 1

1

c c c c c s c s
1 1 1 1 1 1

c c c c c s c s
1 1

s c s c s s s s
1 1 1 1 1 1

s c s c
1

N N N N

x x x x

N N N N

x x x x

N N N N

x x x x

N

x x

x x x x x x x x
m m

x x x x x x x x
m m m m m m

x x x x x x x x
m m

x x x x
m m m

M

ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω

ω ω ω ω

∑ ∑ ∑ ∑
= = = =

∑ ∑ ∑ ∑
= = = =

∑ ∑ ∑ ∑
= = = =

∑
= =

=

⋯ ⋯

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

⋯ ⋯

⋯ ⋯

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

⋯ ( ) ( ) ( ) ( )
1 1 1

s s s s
1

N N N

x x
x x x x

m m m
ω ω ω ω∑ ∑ ∑

= =

 
 
 
 
 
 
 
 
 
 
 
  

⋯

 

 
b. Finding the amplitudes ( ) � �1;i i m

ρ ∈  and phases ( ) � �1;i i m
ϕ ∈  

 
This is the final and easiest step in this whole tutorial. Values of ( ) � �1;i i m

α ∈ , ( ) � �1;i i m
β ∈  

have been determined, and from section 2: ( )cosi i iα ρ ϕ=  and ( )sini i iβ ρ ϕ= − . 

 

Therefore 2 2
i i iρ α β= +  and 1tan i

i
i

βϕ
α

−  −=  
 

. And finally everything that was needed 

in equation (1) ( ( ) ( )
1

cos
m

i i i
i

g x xρ ω ϕ
=

= +∑ ) has been found. 

 
5. Conclusion 
 

This tutorial has fully detailed the basic trigonometric fitting methods that were briefly 
described in [1] and [2]. Those methods have a serious drawback. Despite what seems a 
correct and reasonable symbolic analysis, the practical numerical implementation can 
suffer from several numerical precision issues. 
 
One of the common numerical issues is related to the method used in both sections 3.d 
and 4.a to solve an over-determined, over-constrained system of linear equations, for 
which we have more equations than unknowns to solve. In order to solve this issue both 
sections 3.d and 4.a have used the same Least-Squares (LS) method using what are called 
the normal equations which are well known to be ill-defined and not ideal for numerical 
implementations. The reader of this tutorial interested to address this issue is encouraged 
to follow-up with the topic of Singular Value Decomposition (SVD) described in [5] and 
[9]. 
 
Another common numerical issue is related to the use of limited machine precision 
floating point implementations. Trying to use the LS on very large sets of data even with 
SVD methods can very easily exhibit the limits of the implementation accuracy and give 
results that are very unsatisfying. A reasonable workaround that can be used in some 
cases is to reduce the sampling frequency of the data set used, at the expense of the 
accuracy of the approximation and solution. 
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The last common numerical issue to be mentioned in this conclusion is related to the 
Prony method itself. Firstly the method itself is not guaranteed to be optimal since 
minimizing the error on polynomial coefficients does not insure to find optimal 
frequencies, and secondly the method has known numerical issues when the signal 
analyzed is composed of frequencies very close to each other, or when the signal has a 
non negligible noise component. 
 
Finally trigonometric curve fitting is not a fully solved problem. There exist several other 
trigonometric curve fitting methods such as Pisarenko’s method, the Matrix Pencil 
method, MUSIC, TAM, ESPRIT, and KT methods. The reader interested to pursue 
further investigations related to the area of trigonometric curve fitting is encouraged to 
read [10] and [11] for more details. 
 
The positive side of this incomplete solution is that there is always an interest to discover 
new trigonometric curve fitting algorithms, and the reader of this tutorial can take part in 
this research effort. 
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7. Appendix. Non optimized C++ code. 
 
#include <vector> 
#include <complex> 
 
using namespace std; 
typedef complex<double> COMPLEX; 
const double kPI = 3.14159265358979323846; 
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// Returns in vector all roots of input polynomial using Durand-Kerner / Weirstrass method 
 
vector<COMPLEX> PolyRoots( vector<double> &poly, const double eps, const long maxIter, const double 
setupRadius ) 
{ 
 size_t degree = poly.size() - 1; 
 vector<COMPLEX> roots( degree ); 
 for ( size_t i = 0; i < degree; i++ ) 
 { 
  roots[ i ] = polar( setupRadius, 2.0 * i * kPI / degree ); 
 } 
 

double error = eps; 
 for ( long iter = maxIter; 0 <= iter, eps <= error; iter-- ) 
 { 
  error = 0.0; 
  for ( size_t i = 0; i < degree; i++ ) 
  { 
   COMPLEX divisor( poly[ degree ] ); 
   COMPLEX delta( poly[ degree ] ); 
   for ( size_t j = 0; j < degree; j++ ) 
   { 
    if ( i != j ) 
    { 
     divisor *= roots[ i ] - roots[ j ]; 
    } 
    delta = delta * roots[ i ] + poly[ degree - 1 - j ]; 
   } 
   delta /= divisor; 
   roots[ i ] -= delta; 
   error = max( error, abs( delta ) ); 
  } 
 } 
  
 return roots; 
} 
 
// Returns the inverse of input matrix using full pivot Gauss Jordan method 
 
vector<double> InverseMatrix( vector<double> M, const long n ) 
{ 
vector<bool> freeIndices( n, true ); 
 
 vector<double> res( n * n, 0.0 ); 
 for ( long i = 0; i < n; i++ ) 
 { 
  res[ i * n + i ] = 1.0; 
 } 
 
 for ( long p = 0; p < n; p++ ) 
 { 
  double pivot = 0.0; 
  long mi, mj; 
  for ( long i = 0; i < n; i++ ) 
  { 
   for ( long j = 0; j < n; j++ ) 
   { 
    if ( ( fabs( pivot ) < fabs( M[ i * n + j ] ) ) 

 && freeIndices[ i ] && freeIndices[ j ] ) 
    { 
     mi = i; 
     mj = j; 
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     pivot = M[ i * n + j ]; 
    } 
   } 
  } 
 
  freeIndices[ mj ] = false; 
 
  for ( long j = 0; j < n; j++ ) 
  { 
   swap( M[ mi * n + j ], M[ mj * n + j ] ); 
   swap( res[ mi * n + j ], res[ mj * n + j ] ); 
   M[ mj * n + j ] /= pivot; 
   res[ mj * n + j ] /= pivot; 
  } 
 
  for ( long i = 0; i < n; i++ ) 
  { 
   if ( i != mj ) 
   { 
    double scale = M[ i * n + mj ]; 
    for ( long j = 0; j < n; j++ ) 
    { 
     M[ i * n + j ] -= scale * M[ mj * n + j ]; 
     res[ i * n + j ] -= scale * res[ mj * n + j ]; 
    } 
   } 
  } 
 } 
 
 return res; 
} 
 
// Small utility functions for Prony algorithm 
 
double Sgk( const vector<double> &values, const long m, const long x, const long i ) 
{ 
 if ( i != m ) 
 { 
  return values[ x + i ] + values[ x + 2 * m - i ]; 
 } 
 else 
 { 
  return values[ x + m ]; 
 } 
} 
 
double CosSin( const std::vector<double> &frequencies, const long m, const long x, const long i ) 
{ 
 if ( i < m ) 
 { 
  return sin( frequencies[ i ] * x ); 
 } 
 else 
 { 
  return cos( frequencies[ i - m ] * x ); 
 } 
} 
 
vector<double> MultiplyMatrixVector( const vector<double> &M, const long n, const vector<double> &V ) 
{ 
 vector<double> res( n, 0.0 ); 
 for ( long i = 0; i < n; i++ ) 
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 { 
  for ( long j = 0; j < n; j++ ) 
  { 
   res[ i ] += M[ i * n + j ] * V[ j ]; 
  } 
 } 
 return res; 
} 
 
// Returns up to m frequencies, amplitudes and phases from input data vector 
 
void PronyFit( const vector<double> &values, const long &m, vector<double> &frequenciesRad, 
vector<double> &amplitudes, vector<double> &phases ) 
{ 
 long p = 2 * m; 
 long n = static_cast<long>( values.size() ); 
 
 // CREATE VECTOR AND MATRIX TO GET POLYNOMIAL COEFFICIENTS 
 
 vector<double> A( m * m, 0.0 ); 
 vector<double> B( m, 0.0 ); 
 for ( long i = 0; i < m; i++ ) 
 { 
  for ( long x = 0; x < n - p; x++ ) 
  { 
   for ( long j = 0; j < m; j++ ) 
   { 
    A[ i * m + j ] += Sgk( values, m, x, i + 1 ) * Sgk( values, m, x, j + 1 ); 
   } 
   B[ i ] -= Sgk( values, m, x, i + 1 ) * Sgk( values, m, x, 0 ); 
  } 
 } 
 
 vector<double> inverseA = InverseMatrix( A, m ); 
 vector<double> X = MultiplyMatrixVector( inverseA, m, B ); 
 
 // CREATE LINEAR COMBINATION OF CHEBYSHEV POLYNOMIALS 
 
 vector<double> Tnm2( 1, 1.0 ); // 1 
 double coeffsTnm1[] = { 0.0, 1.0 }; // X 
 vector<double> Tnm1( coeffsTnm1, coeffsTnm1 + sizeof( coeffsTnm1 ) / sizeof( double ) ); 
 double coeffsP[] = { X[ m - 1 ], 2.0 * X[ m - 2 ] }; 
 vector<double> P( coeffsP, coeffsP + sizeof( coeffsP ) / sizeof( double ) ); 
 
 for ( long i = m - 3; -1 <= i; i-- ) 
 { 
  vector<double> Tn( Tnm1.size() + 1, 0.0 ); 
  for ( size_t j = 0; j < Tnm1.size(); j++ ) 
  { 
   Tn[ j + 1 ] += 2.0 * Tnm1[ j ]; 
  } 
  for ( size_t j = 0; j < Tnm2.size(); j++ ) 
  { 
   Tn[ j ] -= Tnm2[ j ]; 
  } 
 
  Tnm2 = Tnm1; 
  Tnm1 = Tn; 
 
  double k = 2.0; 
  if ( 0 <= i ) 
  { 
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   k *= X[ i ]; 
  } 
 
  for ( size_t j = 0; j < Tn.size(); j++ ) 
  { 
   Tn[ j ] *= k; 
  } 
  for ( size_t j = 0; j < P.size(); j++ ) 
  { 
   Tn[ j ] += P[ j ]; 
  } 
 
  P = Tn; 
 } 
 
 // SOLVE FOR COSINE OF FREQUENCIES 
 
 const double epsilon = 1.e-6; 
 vector<COMPLEX> roots = PolyRoots( P, epsilon, 100, 2.0 ); 
 
 // CONVERT TO FREQUENCIES IF ROOTS ARE VALID 
 
 for ( long i = 0; i < m; i++ ) 
 { 
  if ( ( fabs( roots[ i ].imag() ) < epsilon ) && ( fabs( roots[ i ].real() ) < 1.0 + epsilon ) ) 
  { 
   frequenciesRad.push_back( acos( max( min( roots[ i ].real(), 1.0 ), -1.0 ) ) ); 
  } 
 } 
 
 // CREATE VECTOR AND MATRIX TO GET AMPLITUDES AND PHASES 
 
 long nbFreq = static_cast<long>( frequenciesRad.size() ); 
 long m2 = 2 * nbFreq; 
 
 vector<double> A2( m2 * m2, 0.0 ); 
 vector<double> B2( m2, 0.0 ); 
 for ( long i = 0; i < m2; i++ ) 
 { 
  for ( long x = 0; x < n; x++ ) 
  { 
   for ( long j = 0; j < m2; j++ ) 
   { 

A2[ i * m2 + j ] += CosSin( frequenciesRad, nbFreq, x, i ) 
* CosSin( frequenciesRad, nbFreq, x, j ); 

   } 
   B2[ i ] += CosSin( frequenciesRad, nbFreq, x, i ) * values[ x ]; 
  } 
 } 
 
 vector<double> inverseA2 = InverseMatrix( A2, m2 ); 
 vector<double> X2 = MultiplyMatrixVector( inverseA2, m2, B2 ); 
 
 // CONVERT TO FINAL AMPLITUDE AND PHASES 
 
 for ( long i = 0; i < nbFreq; i++ ) 
 { 
  amplitudes.push_back( sqrt( X2[ i ] * X2[ i ] + X2[ i + nbFreq ] * X2[ i + nbFreq ] ) ); 
  phases.push_back( -atan2( X2[ i ], X2[ i + nbFreq ] ) ); 
 } 
} 
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// Example program using PronyFit 
 
int main( int argc, char* argv[] ) 
{ 
 vector<double> originalData( 32, 0.0 ); 
 
 vector<double> originalFrequencies; 
 originalFrequencies.push_back( 0.3 * 2.0 * kPI / originalData.size() ); 
 originalFrequencies.push_back( 1.7 * 2.0 * kPI / originalData.size() ); 
 originalFrequencies.push_back( 3.5 * 2.0 * kPI / originalData.size() ); 
 double originalAmplitudes[] = { 3.0, 5.0, 0.7 }; 
 double originalPhases[] = { 0.0, 1.0, 2.0 }; 
 
 for ( size_t i = 0; i < originalData.size(); i++ ) 
 { 
  for ( size_t j = 0; j < originalFrequencies.size(); j++ ) 
  { 
   originalData[ i ] += originalAmplitudes[ j ] * cos( originalFrequencies[ j ] * i  

+ originalPhases[ j ] ); 
  } 
 } 
  
 vector<double> pronyFrequencies; 
 vector<double> pronyAmplitudes; 
 vector<double> pronyPhases; 
 PronyFit( originalData, 3, pronyFrequencies, pronyAmplitudes, pronyPhases ); 
 
 vector<double> pronyData( originalData.size(), 0.0 ); 
 for ( size_t i = 0; i < pronyData.size(); i++ ) 
 { 
  for ( size_t j = 0; j < pronyFrequencies.size(); j++ ) 
  { 
   pronyData[ i ] += pronyAmplitudes[ j ] * cos( pronyFrequencies[ j ] * i 

 + pronyPhases[ j ] ); 
  } 
   
  double error = fabs( pronyData[ i ] - originalData[ i ] ); 
  printf( "Original: % .6f / Prony: % .6f / Error: % .6f\n", originalData[ i ], pronyData[ i ], error ); 
 } 
 
 return 0; 
} 
 


